A rough penalty genetic algorithm for constrained optimization

نویسنده

  • Chih-Hao Lin
چکیده

Many real-world issues can be formulated as constrained optimization problems and solved using evolutionary algorithms with penalty functions. To effectively handle constraints, this study hybridizes a novel genetic algorithm with the rough set theory, called the rough penalty genetic algorithm (RPGA), with the aim to effectively achieve robust solutions and resolve constrained optimization problems. An infeasible solution is subjected to rough penalties according to its constraint violations. The crossover operation in the genetic algorithm incorporates a novel therapeutic approach and a parameter tuning policy to enhance evolutionary performance. The RPGA is evaluated on eleven benchmark problems and compared with several state-of-the-art algorithms in terms of solution accuracy and robustness. The performance analyses show this approach is a self-adaptive method for penalty adjustment. Remarkably, the method can address a variety of constrained optimization problems even though the initial population includes infeasible solutions. 2013 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...

متن کامل

A Study of Adaptive Penalty Functions for Constrained Genetic Algorithm- Based Optimization

Constrained optimization via the Genetic Algorithm (GA) is often a challenging endeavor, as the GA is most directly suited to unconstrained optimization. Traditionally, external penalty functions have been used to convert a constrained optimization problem into an unconstrained problem for GA-based optimization. This approach requires the somewhat arbitrary selection of penalty draw-down coeffi...

متن کامل

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

Multi-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm

One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 241  شماره 

صفحات  -

تاریخ انتشار 2013